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The hydrostatic Gibbs function cannot be generalized 
to produce a potential that defines equilibrium condi­
tions for phase transition when shear stress is present, 
except in a few special cases of no interest here (Du­
vall, 1976; Paterson, 1973) . The difficulties lie at two 
levels. In the first place, consider a finite mass of 
solid material which is systematically brought to the 
transformation point by application of forces to its outer 
boundaries. The mass does not transform homogeneous­
ly. Nuclei of the new phase begin to grow, transforming 
the origin.al homogeneous mass into a heterogeneous 
mass with inhomogeneities in stress distribution pro­
duced by the growing nuclei. It is no longer possible to 
relate stress states in the new and old phases in any 
simple way and the first and second laws of thermody­
namics for the finite mass are no longer satisfied by the 
simple expedient of setting E1 - TS 1 +PV1 =E2 - TS2 +PV 2 , 

or by an obvious variant thereof. 
At the microscopic level the difficulty persists , but in 

a different way. Consider , for example, only the region 
in the immediate vicinity of an interface between the 
nucleus of the new phase and the matrix of the old. The 
curvature of this interface presents difficulties, so con­
sider a plane interface between the two phases. Is there 
a simple relation analogous to equality of the hydrostatic 
Gibbs function in a fluid which relates conditions on the 
two sides of such an interface? Paterson (1973) reviewed 
the entire problem. He suggested such a relation for 
the special case of coherent phase transitions, i.e. , 
transitions in which the new phase can be constructed 
from the old through imposition of a set of strains 6.TJlj 

across an in terface between old and new phases. If 6.TJ I} 

is small, he gives the condition of equilibrium as 

This gives for the analog of the Clausius-Clapeyron 
equation 

(38) 

(39) 

Robin (1974) finds even this to be untrue. Instead, equi­
librium of the interface depends on its orientation rel­
ative to the lattice, so the above equations are not gen­
eral, even under the very restrictive assumptions made. 

It is evident that if experimental data on phase trans­
formations in solids are to be organized, some simple 
approximation to transformation theory is required, 
even if it be inexact. In reduction of shock data it is 
usually assumed that only hydrostatic or mean pressure 
is significant, and that fluid thermodynamics, including 
the Clausius-Clapeyron equation, applies. Shock mea­
surements give only values of Px at which various events 
occur , including the onset of transformation. Mean 
pressure ji is obtained from Eq. (3) 

P=Px-tT, 
where T is maximum resolved shear stress. In this 
paper, 7 is computed from measured values of the HEL 
and appropriate values of elastic constants; it is often 
ignored entirely. Measurement of T is deSirable, but 
measurement of a second component of stress in shock 
experiments is not simple . If a phase transition occurs 
at higher pressure than the HEL, T may be expected to 
change from its value at the HEL because of stress re-
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laxation, work hardening, temperature increase, and 
density increase, so that its exact value at the transition 
point is not determinate without additional stress mea­
surements. A more detailed discussion of difficulties 
experienced in correcting for shear strength is given 
by Duvall (1976). 

Jones and Graham (1971) have reviewed the shock lit­
erature for experimental evidence of the effects of shear 
stress on phase transitions. They find mean shock 
pressure for bismuth, corrected for the HEL, in close 
agreement with statically determined values, but in that 
case the HEL is small. For germanium the shear cor­
rection to Px is about 15 %, and ji, corrected for the 
HEL, is within the range of static measurements, 
though the spread in both cases is rather large. On the 
basis of one experiment each with CdS and InSb, the 
value of prL, corrected for the HEL, for the shock 
transition is lower than the static transition pressure.4 

The only systematic experimental study of effects of 
T on transition pressure has been in iron. The HEL of 
iron was varied from 0.7 to 1. 9 G Pa by varying heat 
treatment and carbon content (Minshall, 1961; Loree 
et al., 1966a; Jones and Graham, 1971). Their data 
suggest that the transition is occurring at constant ji, 
independent of the resolved shear stress. Supporting 
evidence is provided by Forbes (1976), who finds prL 
to be constant in Armco iron when specimen thickness 
is varied, whereas p;L varies as the HEL. 

A more extreme case than the one just described ex­
ists in heterogeneous rocks and minerals. It has been 
observed that some brittle materials lose a substantial 
portion of their shear strength under shock loading 
(Fowles, 1962; Wackerle, 1962; Graham and Brooks, 
1971; Graham, 1974). Grady et al. (1975) have re­
cently proposed that this results from heterogeneous 
melting associated with the yield process (cf. Sec. VLC). 
In such a case, 'correction for strength based on the 
HEL is totally inappropriate. 

On the basis of investigations conducted to this date, 
there is evidence that in a number of cases the macro­
scopic shear stress has no effect on the shock initiation 
pressure of transformation other than the addition of 
4.,. / 3 to ji, as in Eq. (3) . Nevertheless , there are some 
possible exceptions to be noted in Sec. IV, and it ap­
pears necessary to give careful consideration to the ef­
fects of shear stress on each of the materials under 
study. A tabulation of HEL is given by Jones and Gra­
ham (1971). 

F. Finite transformation rates 

Time available for a phase transition to occur in a 
mass element compressed by shock may be only a few 
nanoseconds and does not normally exceed a few micro­
seconds. If the required time for transition is longer, 
the transition will not be detected in the usual shock ex­
periment because of sample size limitations. This con­
trasts so dramatically with time scale in static experi-

(Superscript (or subscript) TL denotes the pressure of tran­
sition determined in compressive loading. TU denotes a value 
obtained in unloading experiments; T denotes equilibrium tran­
sition values. 
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ments that validity of comparisons between shock-in­
duced and statically measured transitions has quite 
properly been questioned (Roy, 1969; Bridgeman, 1956; 
Bethe, 1942). It is fortunate that experimental mani­
festations of transition kinetics are quite direct and 
readily detected in shock experiments, provided the 
rate lies within a rather broad range defined by geom­
etry of the experiment. Roughly speaking, if the time 
required to effect a Significant fraction of the transition 
is less than d/ 3Us and greater than about 10-8 s, the 
transition rate can be measured in a shock experiment. 
Here d is diameter of the experimental sample and Us 
is shock propagation velocity. For a 90 mm diameter 
target and a shock speed of 5 km/ s, the upper limit is 
about 6x10-6 s. With large explosive systems it is pos­
sible to increase this limit several fold (Walsh and 
Rice, 1957). The lower limit ,of about 10-8 s is deter­
mined by electronic response times and inaccuracies of 
mechanical assembly and impact (Hayes, 1972). Kor­
mer et al, (1966) have suggested that index of refraction 
measurements can detect transformation times as short 
as 10-11 s, (The kinetics of phase transformations in 
shock-loaded solids has recently been reviewed by 
Hayes, 1977.) 

The amount of material which must be transformed in 
order to effect a two-wave structure is defined implicit­
ly by the requirement that the effective R-H curve must 
lie below the Rayleigh line passing through the transi­
tion point. This varies with amplitude of the Plastic I 
wave and relates to detector resolution (Forbes, 1976). 

If a transition has been detected, or is thought to have 
been detected, identification of the new phase is difficult. 
The new phase may be metastable or it may be a differ­
ent stable phase than observed statically (Hayes, 1974). 
In principle it may be possible to make flash x-ray dif­
fraction measurements of the high-pressure phase 
(Johnson and Mitchell, 1972). The equation of state of 
the new phase can be estimated by the procedures de­
scribed in Sec, II.G, but identification of the new phase 
is normally accomplished through close comparison of 
shock and complementary static pressure measure­
ments. 

Effects of finite transformation rate on shock-wave 
structure can be described .by incorporating a rate func­
tion 

da / dt = l/J(V, T, a) (40) 

in a simple model of constitutive relations to be used 
with the flow equations, Eqs. (5), (6), and (S), where a 
is mass fraction of the second phase. Solution of these 
equations for some Simple problems suggests experi­
mental procedures to be followed in measuring reaction' 
rates. 

Recall that each phase in a two-phase system is rep­
resented by a surface inP-V-T space, and that the 
surfaces do not intersect ("system" here refers to a 
small mass element). In equilibrium the space between 
surfaces is bridged by a cylindrical surface with gen­
eratrix parallel to the V axis. When the transition is 
out of equilibrium, the entire range of both surfaces 
and the entire space between them must be considered 
momentarily accessible to the system. The exact state 
path is determined by interactions of the changing stress 
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and temperature fields and the rate law, Eq. (40). These 
interactions are calculated by combining constitutive re­
lations of the material with the flow equations. In the 
Simplest case, constitutive relations of the two individ­
ual phases are their equations of state. For the mixed 
phase, they consist of an appropriate mixture of equa­
tions of state of the two phases and the transition rate 
law. Mass exchange then becomes an irreversible pro­
cess. 

Assume that the following conditions apply in a par-
tially transformed state: 

1. Shear stresses are negligible. 
2. Pressure is cqmmon to both phases. 
3. Temperature is common to both phases. 
4. Particle velocity, Up, is common to both phase~. 
5'. Interface energy is negligible. 
Conditions (2), (3), and (5) are to some extent incom­

patible since (2) and (3) require the presence of many 
small islands of the second phase dispersed in the first , 
whereas this condition is just the one which tends to 
make interface energy important. Because of the com­
plexity, this difficulty is ignored for the present, but it 
must be kept in mind for future consideration. Condition 
(4) is reasonable for solid-solid transitions, perhaps 
somewhat less reasonable for liquid-solid, and unrea­
sonable for liquid-vapor transitions, which are not 
considered here. 

With the above assumptions, state variables at each 
pOint in the continuum are unique. From assumption 
(5), 

(41) 

and 

(42) 

Subscripts "1" and "2" refer to first and second phases, 
respectively. Differentiating Eqs. (41) and (42) yields, 
within the mixed phase region, 

dV = (1 - a)dV I +adV2 + (V2 - V l)da, 

dE = (1- a)dE I +adE2 + (E 2 -E1)da. 

Equations of state in the two phases are taken in the 
form 

(43) 

(44) 

Vj=Vj(P,T), (45) 

Ej=Ej(P, T), 

i= 1,2. 

(46) 

Equations (43) and (44') and the differentials of (45) and 
(46) contain nine variables: ,dV, dE, dVl> dV 2 , dEl> 
dEv , da, dP, and dT. When these six equations are 
combined with the first law in the form 

dE =-PdV (47) 

the resulting set of equations can be solved for dP and 
dT in terms of dV and da (Horie and Duvall, 1965a, 
1965b; Andrews, 1973; Hayes, 1975). 

where the a i/ s are functions of a, P, and T. 

(4S) 

(49) 

/ 


